Using List Comprehension in Python to Normalize a List of Lists

In case it’s not true, the nested list can be transformed by using a double comprehension. The initial one generates a flat list while the second one produces nested lists. It’s important to note that the order of the elements differs. To change the list, it’s possible to assign it to a list comprising of lists.


Question:

f = [[7.0, 5.0, 9.0, 7.0], [7.0, 7.0, 8.0, 6.0], [12.0, 6.0, 5.0, 7.0], [5.0, 7.0, 9.0, 9.0], [9.0, 5.0, 6.0, 10.0], [2.0, 0.0, 0.0, 28.0], [0.0, 0.0, 0.0, 30.0], [0.0, 0.0, 0.0, 30.0], [0.0, 30.0, 0.0, 0.0], [2.0, 21.0, 4.0, 3.0], [4.0, 14.0, 11.0, 1.0], [3.0, 4.0, 20.0, 3.0], [0.0, 0.0, 30.0, 0.0], [30.0, 0.0, 0.0, 0.0], [30.0, 0.0, 0.0, 0.0], [30.0, 0.0, 0.0, 0.0], [4.0, 8.0, 5.0, 12.0], [7.0, 6.0, 9.0, 6.0], [5.0, 8.0, 8.0, 5.0], [6.0, 8.0, 2.0, 10.0], [9.0, 3.0, 7.0, 7.0]]

The list belongs to me and requires normalization. I attempted to achieve this by utilizing a specific code.

a=[(float(i) for i in d) for d in f)/(sum(j) for j in f)]

I’ve encountered an error. Could someone please provide me with a solution?


Solution 1:

The reason for the confusion could be attributed to the attempt to combine two separate
nested list comprehension
syntax structures.

Assuming you possess a list of list of floats, all the given examples can be followed. In case you do not have such a list, you will need to initially convert your nested list.

f = [[float(i) for i in j] for j in f]

Flat list with a double comprehension

The first one returns a flat list:

f = [[7.0, 5.0, 9.0, 7.0], [7.0, 7.0, 8.0, 6.0], [12.0, 6.0, 5.0, 7.0], [5.0, 7.0, 9.0, 9.0], [9.0, 5.0, 6.0, 10.0], [2.0, 0.0, 0.0, 28.0], [0.0, 0.0, 0.0, 30.0], [0.0, 0.0, 0.0, 30.0], [0.0, 30.0, 0.0, 0.0], [2.0, 21.0, 4.0, 3.0], [4.0, 14.0, 11.0, 1.0], [3.0, 4.0, 20.0, 3.0], [0.0, 0.0, 30.0, 0.0], [30.0, 0.0, 0.0, 0.0], [30.0, 0.0, 0.0, 0.0], [30.0, 0.0, 0.0, 0.0], [4.0, 8.0, 5.0, 12.0], [7.0, 6.0, 9.0, 6.0], [5.0, 8.0, 8.0, 5.0], [6.0, 8.0, 2.0, 10.0], [9.0, 3.0, 7.0, 7.0]]
a1 = [i / sum(j) for j in f for i in j]
print(a1)
# [0.25, 0.17857142857142858, 0.32142857142857145, 0.25, 0.25, 0.25, 0.2857142857142857, 0.21428571428571427, 0.4, 0.2, 0.16666666666666666, 0.23333333333333334, 0.16666666666666666, 0.23333333333333334, 0.3, 0.3, 0.3, 0.16666666666666666, 0.2, 0.3333333333333333, 0.06666666666666667, 0.0, 0.0, 0.9333333333333333, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 1.0, 0.0, 0.0, 0.06666666666666667, 0.7, 0.13333333333333333, 0.1, 0.13333333333333333, 0.4666666666666667, 0.36666666666666664, 0.03333333333333333, 0.1, 0.13333333333333333, 0.6666666666666666, 0.1, 0.0, 0.0, 1.0, 0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.13793103448275862, 0.27586206896551724, 0.1724137931034483, 0.41379310344827586, 0.25, 0.21428571428571427, 0.32142857142857145, 0.21428571428571427, 0.19230769230769232, 0.3076923076923077, 0.3076923076923077, 0.19230769230769232, 0.23076923076923078, 0.3076923076923077, 0.07692307692307693, 0.38461538461538464, 0.34615384615384615, 0.11538461538461539, 0.2692307692307692, 0.2692307692307692]

Nested list with a double comprehension

The second option produces lists within lists.

a2 = [[i / sum(j) for i in j] for j in f]
print(a2)
# [[0.25, 0.17857142857142858, 0.32142857142857145, 0.25], [0.25, 0.25, 0.2857142857142857, 0.21428571428571427], [0.4, 0.2, 0.16666666666666666, 0.23333333333333334], [0.16666666666666666, 0.23333333333333334, 0.3, 0.3], [0.3, 0.16666666666666666, 0.2, 0.3333333333333333], [0.06666666666666667, 0.0, 0.0, 0.9333333333333333], [0.0, 0.0, 0.0, 1.0], [0.0, 0.0, 0.0, 1.0], [0.0, 1.0, 0.0, 0.0], [0.06666666666666667, 0.7, 0.13333333333333333, 0.1], [0.13333333333333333, 0.4666666666666667, 0.36666666666666664, 0.03333333333333333], [0.1, 0.13333333333333333, 0.6666666666666666, 0.1], [0.0, 0.0, 1.0, 0.0], [1.0, 0.0, 0.0, 0.0], [1.0, 0.0, 0.0, 0.0], [1.0, 0.0, 0.0, 0.0], [0.13793103448275862, 0.27586206896551724, 0.1724137931034483, 0.41379310344827586], [0.25, 0.21428571428571427, 0.32142857142857145, 0.21428571428571427], [0.19230769230769232, 0.3076923076923077, 0.3076923076923077, 0.19230769230769232], [0.23076923076923078, 0.3076923076923077, 0.07692307692307693, 0.38461538461538464], [0.34615384615384615, 0.11538461538461539, 0.2692307692307692, 0.2692307692307692]]

Observe the variation in the arrangement of

for i

and

for j

.

Moreover, the iteration for each syntax
calculate sum
(j) is the same.

Normalize function

One way to prevent this is by creating a function called

normalize

.

def normalize(l):
    s = sum(l)
    return [i/s for i in l]
print([normalize(j) for j in f])

Map and zip

In the end, it is possible to utilize a blend of

map

and

zip

.

sums = map(sum, f)
print([[i/s for i in j] for j,s in zip(f, sums)])


Solution 2:

try this:

from __future__ import division #to avoid integer division
normalized_list = [[a/sum(el) for a in el] for el in f]


Solution 3:

You have a syntax error in that.

My initial approach would be to iterate over the list and verify its functionality.

for i in f:
  print [float(j)/sum(i) for j in i]

You can also do:

a = [(float(j)/sum(i) for j in i) for i in f]


Solution 4:

a=[[float(i)/sum(d) for i in d] for d in f]

This equivalent of :

res = []
for d in f :
    res1 =[]
    for i in d: 
        res1.append(float(i)/sum(d))
    res.append(res1)

Frequently Asked Questions